The Origin, Development and Molecular Diversity of Rodent Olfactory Bulb Glutamatergic Neurons Distinguished by Expression of Transcription Factor NeuroD1

نویسندگان

  • Laurent Roybon
  • Teresa L. Mastracci
  • Joyce Li
  • Simon R. W. Stott
  • Andrew B. Leiter
  • Lori Sussel
  • Patrik Brundin
  • Jia-Yi Li
  • Brian Key
چکیده

Production of olfactory bulb neurons occurs continuously in the rodent brain. Little is known, however, about cellular diversity in the glutamatergic neuron subpopulation. In the central nervous system, the basic helix-loop-helix transcription factor NeuroD1 (ND1) is commonly associated with glutamatergic neuron development. In this study, we utilized ND1 to identify the different subpopulations of olfactory bulb glutamategic neurons and their progenitors, both in the embryo and postnatally. Using knock-in mice, transgenic mice and retroviral transgene delivery, we demonstrate the existence of several different populations of glutamatergic olfactory bulb neurons, the progenitors of which are ND1+ and ND1- lineage-restricted, and are temporally and regionally separated. We show that the first olfactory bulb glutamatergic neurons produced - the mitral cells - can be divided into molecularly diverse subpopulations. Our findings illustrate the complexity of neuronal diversity in the olfactory bulb and that seemingly homogenous neuronal populations can consist of multiple subpopulations with unique molecular signatures of transcription factors and expressing neuronal subtype-specific markers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NeuroD1 induces terminal neuronal differentiation in olfactory neurogenesis.

After their generation and specification in periventricular regions, neuronal precursors maintain an immature and migratory state until their arrival in the respective target structures. Only here are terminal differentiation and synaptic integration induced. Although the molecular control of neuronal specification has started to be elucidated, little is known about the factors that control the...

متن کامل

Gabapentin prevents oxaliplatin-induced central sensitization in the dorsal horn neurons in rats

Objective(s): The present study aims to study the alteration of glutamatergic transmission in the dorsal horn neurons and the effect of gabapentin on oxaliplatin-induced neuropathic pain in rats. Materials and Methods: Oxaliplatin (5 mg/kg) or saline was administered to adult male Sprague-Dawley rats.  Gabapentin (60 mg/kg, IP) or vehicle was injected daily. Mechanical allodynia was assessed us...

متن کامل

The Neurogenic Factor NeuroD1 Is Expressed in Post-Mitotic Cells during Juvenile and Adult Xenopus Neurogenesis and Not in Progenitor or Radial Glial Cells

In contrast to mammals that have limited proliferation and neurogenesis capacities, the Xenopus frog exhibit a great potential regarding proliferation and production of new cells in the adult brain. This ability makes Xenopus a useful model for understanding the molecular programs required for adult neurogenesis. Transcriptional factors that control adult neurogenesis in vertebrate species unde...

متن کامل

The transcription factor Fezf2 directs the differentiation of neural stem cells in the subventricular zone toward a cortical phenotype.

Postnatal neurogenesis in mammals is confined to restricted brain regions, including the subventricular zone (SVZ). In rodents, the SVZ is a lifelong source of new neurons fated to migrate to the olfactory bulb (OB), where the majority become GABAergic interneurons. The plastic capacity of neonatal and adult SVZ stem/progenitor cells is still largely unknown. By overexpressing the transcription...

متن کامل

Exciting News from the Adult Mouse Subventricular Zone

A commentary on Adult generation of glutamatergic olfactory bulb interneurons. In the adult mammalian brain the fore-brain subventricular zone (SVZ) is a source of olfactory bulb (OB) GABAergic neurons. It is by now well established that astrocyte-like cells via fast-amplifying progenitor cells generate neuronal precursors that mature into functional neurons (Kriegstein and Alvarez-Buylla, 2009...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015